1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
#![cfg_attr(rustfmt, rustfmt::skip)]
//! Trait abstractions describing the semantics of "being `#[repr(C)]`"

use_prelude!();

__cfg_headers__! {
    use crate::headers::{
        Definer,
        languages::*,
    };
}

pub(in crate)
mod macros;

#[doc(inline)]
pub use crate::{from_CType_impl_ReprC, ReprC, CType};

pub use crate::{
    derive_ReprC,
};

type_level_enum! {
    pub
    enum OpaqueKind {
        Concrete,
        Opaque,
    }
}

/// Safety (non-exhaustive list at the moment):
///   - `::core::mem::zeroed::<Self>()` must be sound to use.
pub
unsafe
trait CType
:
    Sized +
    Copy +
{
    type OPAQUE_KIND : OpaqueKind::T;

    fn zeroed() -> Self {
        unsafe {
            ::core::mem::zeroed()
        }
    }

    __cfg_headers__! {
        fn short_name ()
          -> String
        ;

        #[allow(nonstandard_style)]
        fn define_self__impl (
            language: &'_ dyn HeaderLanguage,
            definer: &'_ mut dyn Definer,
        ) -> io::Result<()>
        ;

        fn define_self (
            language: &'_ dyn HeaderLanguage,
            definer: &'_ mut dyn Definer,
        ) -> io::Result<()>
        {
            definer.define_once(
                &Self::name(language),
                &mut |definer| Self::define_self__impl(language, definer),
            )
        }

        fn name (
            _language: &'_ dyn HeaderLanguage,
        ) -> String
        {
            format!("{}_t", Self::short_name())
        }

        fn name_wrapping_var (
            language: &'_ dyn HeaderLanguage,
            var_name: &'_ str,
        ) -> String
        {
            let sep = if var_name.is_empty() { "" } else { " " };
            format!("{}{sep}{var_name}", Self::name(language))
        }

        /// Optional marshaler attached to the type (_e.g._,
        /// `[MarshalAs(UnmanagedType.FunctionPtr)]`)
        fn csharp_marshaler ()
          -> Option<String>
        {
            None
        }
    }
}

unsafe
impl<T : LegacyCType> CType for T {
    type OPAQUE_KIND = <T as LegacyCType>::OPAQUE_KIND;

    __cfg_headers__! {
        #[inline]
        fn short_name ()
          -> String
        {
            <Self as LegacyCType>::c_short_name().to_string()
        }

        #[inline]
        fn define_self__impl (
            _: &'_ dyn HeaderLanguage,
            _: &'_ mut dyn Definer,
        ) -> io::Result<()>
        {
            unimplemented!()
        }

        fn define_self (
            language: &'_ dyn HeaderLanguage,
            definer: &'_ mut dyn Definer,
        ) -> io::Result<()>
        {
            match () {
                | _case if language.is::<C>() => {
                    <Self as LegacyCType>::c_define_self(definer)
                },
                | _case if language.is::<CSharp>() => {
                    <Self as LegacyCType>::csharp_define_self(definer)
                },
                #[cfg(feature = "python-headers")]
                | _case if language.is::<Python>() => {
                    <Self as LegacyCType>::c_define_self(definer)
                },
                | _ => unimplemented!(),
            }
        }

        #[inline]
        fn name (
            language: &'_ dyn HeaderLanguage,
        ) -> String
        {
            Self::name_wrapping_var(language, "")
        }

        #[inline]
        fn name_wrapping_var (
            language: &'_ dyn HeaderLanguage,
            var_name: &'_ str,
        ) -> String
        {
            match () {
                | _case if language.is::<C>() => {
                    <Self as LegacyCType>::c_var(var_name).to_string()
                },
                | _case if language.is::<CSharp>() => {
                    let sep = if var_name.is_empty() { "" } else { " " };
                    format!("{}{sep}{var_name}", Self::csharp_ty())
                },
                #[cfg(feature = "python-headers")]
                | _case if language.is::<Python>() => {
                    <Self as LegacyCType>::c_var(var_name).to_string()
                },
                | _ => unimplemented!(),
            }
        }

        #[inline]
        fn csharp_marshaler ()
          -> Option<String>
        {
            <T as LegacyCType>::legacy_csharp_marshaler()
        }
    }
}

pub
type CLayoutOf<ImplReprC> = <ImplReprC as ReprC>::CLayout;

/// One of the two core traits of this crate (with [`ReprC`][`trait@ReprC`]).
///
/// `CType` is an `unsafe` trait that binds a Rust type to a C typedef.
///
/// To optimise compile-times, the C typedef part is gated behind the `headers`
/// cargo feature, so when that feature is not enabled, the trait may "look"
/// like a marker trait, but it isn't.
///
/// That's why **manually implementing this trait is strongly discouraged**,
/// although not forbidden:
///
///   - If you trully want a manual implementation of `CType` (_e.g._, for an
///     "opaque type" pattern, _i.e._, a forward declaration), then, to
///     implement the trait so that it works no matter the status of
///     the `safer_ffi/headers` feature, one must define the methods as if
///     feature was present, but with a `#[::safer_ffi::cfg_headers]` gate slapped
///     on _each_ method.
///
/// # Safety
///
/// The Rust type in an `extern "C"` function must have the same layout and ABI
/// as the defined C type, and all the bit-patterns representing any instance
/// of such C type must be valid and safe bit-patterns for the Rust type.
///
/// For the most common types, there are only two reasons to correctly be a
/// `CType`:
///
///   - being a primitive type, such as an integer type or a (slim) pointer.
///
///       - This crates provides as many of these implementations as possible.
///
///   - and recursively, a non-zero-sized `#[repr(C)]` struct of `CType` fields.
///
///       - the [`CType!`] macro can be used to wrap a `#[repr(C)]` struct
///         definition to _safely_ and automagically implement the trait
///         when it is sound to do so.
///
/// Note that types such as Rust's [`bool`] are ruled out by this definition,
/// since it has the ABI of a `u8 <-> uint8_t`, and yet there are many
/// bit-patterns for the `uint8_t` type that do not make _valid_ `bool`s.
///
/// For such types, see the [`ReprC`][`trait@ReprC`] trait.
pub
unsafe trait LegacyCType
:
    Sized +
    Copy +
    CType +
{
    type OPAQUE_KIND : OpaqueKind::T;
    __cfg_headers__! {
        /// A short-name description of the type, mainly used to fill
        /// "placeholders" such as when monomorphising generics structs or
        /// arrays.
        ///
        /// This provides the implementation used by [`CType::c_short_name`]`()`.
        ///
        /// There are no bad implementations of this method, except,
        /// of course, for the obligation to provide a valid identifier chunk,
        /// _i.e._, the output must only contain alphanumeric digits and
        /// underscores.
        ///
        /// For instance, given `T : CType` and `const N: usize > 0`, the type
        /// `[T; N]` (inline fixed-size array of `N` consecutive elements of
        /// type `T`) will be typedef-named as:
        ///
        /// ```rust,ignore
        /// write!(fmt, "{}_{}_array", <T as CType>::c_short_name(), N)
        /// ```
        ///
        /// Generally, typedefs with a trailing `_t` will see that `_t` trimmed
        /// when used as a `short_name`.
        ///
        /// ## Implementation by [`CType!`]:
        ///
        /// A non generic struct such as:
        ///
        /// ```rust,ignore
        /// CType! {
        ///     #[repr(C)]
        ///     struct Foo { /* fields */ }
        /// }
        /// ```
        ///
        /// will have `Foo` as its `short_name`.
        ///
        /// A generic struct such as:
        ///
        /// ```rust,ignore
        /// CType! {
        ///     #[repr(C)]
        ///     struct Foo[T] where { T : CType } { /* fields */ }
        /// }
        /// ```
        ///
        /// will have `Foo_xxx` as its `short_name`, with `xxx` being `T`'s
        /// `short_name`.
        fn c_short_name_fmt (fmt: &'_ mut fmt::Formatter<'_>)
          -> fmt::Result
        ;
        // {
        //     Self::short_name_fmt(&C, fmt)
        // }

        // fn short_name_fmt (
        //     language: &'_ dyn HeaderLanguage,
        //     fmt: &'_ mut fmt::Formatter<'_>,
        // ) -> fmt::Result
        // {
        //     match () {
        //         | _case if language.is::<C>() => Self::c_short_name_fmt(fmt),
        //         // | _case if language.is::<CSharp>() => Self::csharp_short_name_fmt(fmt),
        //         | _ => unimplemented!(),
        //     }
        // }

        /// Convenience function for _callers_ / users of types implementing
        /// [`CType`][`trait@CType`].
        ///
        /// The `Display` logic is auto-derived from the implementation of
        /// [`CType::c_short_name_fmt`]`()`.
        #[inline]
        fn c_short_name ()
          -> short_name_impl_display::ImplDisplay<Self>
        {
            short_name_impl_display::ImplDisplay { _phantom: PhantomData }
        }

        /// Necessary one-time code for [`CType::c_var`]`()` to make sense.
        ///
        /// Some types, such as `char`, are part of the language, and can be
        /// used directly by [`CType::c_var`]`()`.
        /// In that case, there is nothing else to _define_, and all is fine.
        ///
        ///   - That is the default implementation of this method: doing
        ///     nothing.
        ///
        /// But most often than not, a `typedef` or an `#include` is required.
        ///
        /// In that case, here is the place to put it, with the help of the
        /// provided `Definer`.
        ///
        /// # Idempotent
        ///
        /// Given some `definer: &mut dyn Definer`, **the `c_define_self(definer)`
        /// call must be idempotent _w.r.t._ code generated**. In other words,
        /// two or more such calls must not generate any extra code _w.r.t_ the
        /// first call.
        ///
        /// This is easy to achieve thanks to `definer`:
        ///
        /// ```rust,ignore
        /// // This ensures the idempotency requirements are met.
        /// definer.define_once(
        ///     // some unique `&str`, ideally the C name being defined:
        ///     "my_super_type_t",
        ///     // Actual code generation logic, writing to `definer.out()`
        ///     &mut |definer| {
        ///         // If the typdef recursively needs other types being defined,
        ///         // ensure it is the case by explicitly calling
        ///         // `c_define_self(definer)` on those types.
        ///         OtherType::c_define_self(definer)?;
        ///         write!(definer.out(), "typedef ... my_super_type_t;", ...)
        ///     },
        /// )?
        /// ```
        ///
        /// # Safety
        ///
        /// Given that the defined types may be used by [`CType::c_var_fmt`]`()`,
        /// the same safety disclaimers apply.
        ///
        /// ## Examples
        ///
        /// #### `i32`
        ///
        /// The corresponding type for `i32` in C is `int32_t`, but such type
        /// definition is not part of the language, it is brought by a library
        /// instead: `<stdint.h>` (or `<inttypes.h>` since it includes it).
        ///
        /// ```rust,ignore
        /// unsafe impl CType for i32 {
        ///     #[::safer_ffi::cfg_headers]
        ///     fn c_define_self (definer: &'_ mut dyn Definer)
        ///       -> io::Result<()>
        ///     {
        ///         definer.define_once("<stdint.h>", &mut |definer| {
        ///             write!(definer.out(), "\n#include <stdint.h>\n")
        ///         })
        ///     }
        ///
        ///     // ...
        /// }
        /// ```
        ///
        /// #### `#[repr(C)] struct Foo { x: i32 }`
        ///
        /// ```rust,ignore
        /// #[repr(C)]
        /// struct Foo {
        ///     x: i32,
        /// }
        ///
        /// unsafe impl CType for i32 {
        ///     #[::safer_ffi::cfg_headers]
        ///     fn c_define_self (definer: &'_ mut dyn Definer)
        ///       -> io::Result<()>
        ///     {
        ///         definer.define_once("Foo_t", &mut |definer| {
        ///             // ensure int32_t makes sense
        ///             <i32 as CType>::c_define_self(definer)?;
        ///             write!(definer.out(),
        ///                 "typedef struct {{ {}; }} Foo_t;",
        ///                 <i32 as CType>::c_var("x"),
        ///             )
        ///         })
        ///     }
        ///
        ///     // ...
        /// }
        /// ```
        fn c_define_self (definer: &'_ mut dyn Definer)
          -> io::Result<()>
        ;
        // {
        //     Self::define_self(&C, definer)
        // }

        // #[inline]
        // fn define_self__impl (
        //     language: &'_ dyn HeaderLanguage,
        //     definer: &'_ mut dyn Definer,
        // ) -> io::Result<()>
        // {
        //     let _ = (language, definer);
        //     Ok(())
        // }

        /// The core method of the trait: it provides the implementation to be
        /// used by [`CType::c_var`], by bringing a `Formatter` in scope.
        ///
        /// This provides the implementation used by [`CType::c_var`]`()`.
        ///
        /// The implementations are thus much like any classic `Display` impl,
        /// except that:
        ///
        ///   - it must output valid C code representing the type corresponding
        ///     to the Rust type.
        ///
        ///   - a `var_name` may be supplied, in which case the type must
        ///     use that as its "variable name" (C being how it is, the var
        ///     name may need to be inserted in the middle of the types, such as
        ///     with arrays and function pointers).
        ///
        /// # Safety
        ///
        /// Here is where the meat of the safety happens: associating a Rust
        /// type to a non-corresponding C definition will cause Undefined
        /// Behavior when a function using such type in its ABI is called.
        ///
        /// ## Examples
        ///
        /// #### `i32`
        ///
        /// ```rust,ignore
        /// unsafe impl CType for i32 {
        ///     #[::safer_ffi::cfg_headers]
        ///     fn c_var_fmt (
        ///         fmt: &'_ mut fmt::Formatter<'_>,
        ///         var_name: &'_ str,
        ///     ) -> fmt::Result
        ///     {
        ///         write!(fmt, "int32_t {}", var_name)
        ///     }
        ///
        ///     // ...
        /// }
        /// ```
        ///
        /// #### `Option<extern "C" fn (i32) -> u32>`
        ///
        /// ```rust,ignore
        /// unsafe impl CType for Option<extern "C" fn (i32) -> u32> {
        ///     #[::safer_ffi::cfg_headers]
        ///     fn c_var_fmt (
        ///         fmt: &'_ mut fmt::Formatter<'_>,
        ///         var_name: &'_ str,
        ///     ) -> fmt::Result
        ///     {
        ///         write!(fmt, "uint32_t (*{})(int32_t)", var_name)
        ///     }
        ///
        ///     // ...
        /// }
        /// ```
        ///
        /// #### `[i32; 42]`
        ///
        /// ```rust,ignore
        /// unsafe impl CType for [i32; 42] {
        ///     #[::safer_ffi::cfg_headers]
        ///     fn c_var_fmt (
        ///         fmt: &'_ mut fmt::Formatter<'_>,
        ///         var_name: &'_ str,
        ///     ) -> fmt::Result
        ///     {
        ///         let typedef_name = format_args!("{}_t", Self::c_short_name());
        ///         write!(fmt, "{} {}", typedef_name, var_name)
        ///     }
        ///
        ///     // Since `c_var_fmt()` requires a one-time typedef, overriding
        ///     // `c_define_self()` is necessary:
        ///     #[::safer_ffi::cfg_headers]
        ///     fn c_define_self (definer: &'_ mut dyn Definer)
        ///       -> fmt::Result
        ///     {
        ///         let typedef_name = &format!("{}_t", Self::c_short_name());
        ///         definer.define_once(typedef_name, &mut |definer| {
        ///             // ensure the array element type is defined
        ///             i32::c_define_self(definer)?;
        ///             write!(definer.out(),
        ///                 "typedef struct {{ {0}; }} {1};\n",
        ///                 i32::c_var("arr[42]"), // `int32_t arr[42]`
        ///                 typedef_name,
        ///             )
        ///         })
        ///     }
        ///
        ///     // etc.
        /// }
        /// ```
        fn c_var_fmt (
            fmt: &'_ mut fmt::Formatter<'_>,
            var_name: &'_ str,
        ) -> fmt::Result
        ;

        /// Convenience function for _callers_ / users of types implementing
        /// [`CType`][`trait@CType`].
        ///
        /// The `Display` logic is auto-derived from the implementation of
        /// [`CType::c_var_fmt`]`()`.
        #[inline]
        fn c_var (
            var_name: &'_ str,
        ) -> var_impl_display::ImplDisplay<'_, Self>
        {
            var_impl_display::ImplDisplay {
                var_name,
                _phantom: Default::default(),
            }
        }

        __cfg_csharp__! {
            /// Extra typedef code (_e.g._ `[LayoutKind.Sequential] struct ...`)
            fn csharp_define_self (definer: &'_ mut dyn Definer)
              -> io::Result<()>
            ;
            // {
            //     Self::define_self(
            //         &CSharp,
            //         definer,
            //     )
            // }

            /// Optional marshaler attached to the type (_e.g._,
            /// `[MarshalAs(UnmanagedType.FunctionPtr)]`)
            fn legacy_csharp_marshaler ()
              -> Option<rust::String>
            {
                None
            }

            // TODO: Optimize out those unnecessary heap-allocations
            /// Type name (_e.g._, `int`, `string`, `IntPtr`)
            fn csharp_ty ()
              -> rust::String
            {
                Self::c_var("").to_string()
            }

            /// Convenience function for formatting `{ty} {var}` in CSharp.
            fn csharp_var (var_name: &'_ str)
              -> rust::String
            {
                format!(
                    "{}{sep}{}",
                    Self::csharp_ty(), var_name,
                    sep = if var_name.is_empty() { "" } else { " " },
                )
            }
        }
    }
}

__cfg_headers__! {
    mod var_impl_display {
        use super::*;
        use fmt::*;

        #[allow(missing_debug_implementations)]
        pub
        struct ImplDisplay<'__, T : LegacyCType> {
            pub(in super)
            var_name: &'__ str,

            pub(in super)
            _phantom: ::core::marker::PhantomData<T>,
        }

        impl<T : LegacyCType> Display
            for ImplDisplay<'_, T>
        {
            #[inline]
            fn fmt (self: &'_ Self, fmt: &'_ mut Formatter<'_>)
              -> Result
            {
                T::c_var_fmt(fmt, self.var_name)
            }
        }
    }

    mod short_name_impl_display {
        use super::*;
        use fmt::*;

        #[allow(missing_debug_implementations)]
        pub
        struct ImplDisplay<T : LegacyCType> {
            pub(in super)
            _phantom: ::core::marker::PhantomData<T>,
        }

        impl<T : LegacyCType> Display
            for ImplDisplay<T>
        {
            #[inline]
            fn fmt (self: &'_ Self, fmt: &'_ mut Formatter<'_>)
              -> Result
            {
                T::c_short_name_fmt(fmt)
            }
        }
    }
}

/// The meat of the crate. _The_ trait.
/// This trait describes that **a type has a defined / fixed `#[repr(C)]`
/// layout**.
///
/// This is expressed at the type level by the `unsafe` (trait) type
/// association of `ReprC::CLayout`, which must be a [`CType`][`trait@CType`].
///
/// Because of that property, the type may be used in the API of an
/// `#[ffi_export]`-ed function, where ABI-wise it will be replaced by its
/// equivalent [C layout][`ReprC::CLayout`].
///
/// Then, `#[ffi_export]` will transmute the `CType` parameters back to the
/// provided `ReprC` types, using [`from_raw_unchecked`].
///
/// Although, from a pure point of view, no checks are performed at this step
/// whatsoever, in practice, when `debug_assertions` are enabled, some "sanity
/// checks" are performed on the input parameters: [`ReprC::is_valid`] is
/// called in that case (as part of the implementation of [`from_raw`]).
///
///   - Although that may look innocent, it is actually pretty powerful tool:
///
///     **For instance, a non-null pointer coming from C can, this way, be
///     automatically checked and unwrapped, and the same applies for
///     enumerations having a finite number of valid bit-patterns.**
///
/// # Safety
///
/// It must be sound to transmute from a `ReprC::CLayout` instance when the
/// bit pattern represents a _safe_ instance of `Self`.
///
/// # Implementing `ReprC`
///
/// It is generally recommended to avoid manually (and `unsafe`-ly)
/// implementing the [`ReprC`] trait. Instead, the recommended and blessed way
/// is to use the [`#[derive_ReprC]`](/safer_ffi/layout/attr.derive_ReprC.html)
/// attribute on your `#[repr(C)] struct` (or your field-less
/// `#[repr(<integer>)] enum`).
///
/// [`ReprC`]: `trait@ReprC`
///
/// ## Examples
///
/// #### Simple `struct`
///
/// ```rust,no_run
/// # fn main () {}
/// use ::safer_ffi::prelude::*;
///
/// #[derive_ReprC]
/// #[repr(C)]
/// struct Instant {
///     seconds: u64,
///     nanos: u32,
/// }
/// ```
///
///   - corresponding to the following C definition:
///
///     ```C
///     typedef struct {
///         uint64_t seconds;
///         uint32_t nanos;
///     } Instant_t;
///     ```
///
/// #### Field-less `enum`
///
/// ```rust,no_run
/// # fn main () {}
/// use ::safer_ffi::prelude::*;
///
/// #[derive_ReprC]
/// #[repr(u8)]
/// enum Status {
///     Ok = 0,
///     Busy,
///     NotInTheMood,
///     OnStrike,
///     OhNo,
/// }
/// ```
///
///   - corresponding to the following C definition:
///
///     ```C
///     typedef uint8_t Status_t; enum {
///         STATUS_OK = 0,
///         STATUS_BUSY,
///         STATUS_NOT_IN_THE_MOOD,
///         STATUS_ON_STRIKE,
///         STATUS_OH_NO,
///     }
///     ```
///
/// #### Generic `struct`
///
/// ```rust,no_run
/// # fn main () {}
/// use ::safer_ffi::prelude::*;
///
/// #[derive_ReprC]
/// #[repr(C)]
/// struct Point<Coordinate : ReprC> {
///     x: Coordinate,
///     y: Coordinate,
/// }
/// ```
///
/// Each monomorphization leads to its own C definition:
///
///   - **`Point<i32>`**
///
///     ```C
///     typedef struct {
///         int32_t x;
///         int32_t y;
///     } Point_int32_t;
///     ```
///
///   - **`Point<f64>`**
///
///     ```C
///     typedef struct {
///         double x;
///         double y;
///     } Point_double_t;
///     ```
pub
unsafe
trait ReprC : Sized {
    /// The `CType` having the same layout as `Self`.
    type CLayout : CType;

    /// Sanity checks that can be performed on an instance of the `CType`
    /// layout.
    ///
    /// Such checks are performed when calling [`from_raw`], or equivalently
    /// (⚠️ only with `debug_assertions` enabled ⚠️), [`from_raw_unchecked`].
    ///
    /// Implementation-wise, this function is only a "sanity check" step:
    ///
    ///   - It is valid (although rather pointless) for this function to always
    ///     return `true`, even if the input may be `unsafe` to transmute to
    ///     `Self`, or even be an _invalid_ value of type `Self`.
    ///
    ///   - In the other direction, it is not unsound, although it would be a
    ///     logic error, to always return `false`.
    ///
    ///   - This is because it is impossible to have a function that for any
    ///     type is able to tell if a given bit pattern is a safe value of that
    ///     type.
    ///
    /// In practice, if this function returns `false`, then such result must be
    /// trusted, _i.e._, transmuting such instance to the `Self` type will,
    /// at the very least, break a _safety_ invariant, and it will even most
    /// probably break a _validity_ invariant.
    ///
    /// On the other hand, if the function returns `true`, then the result is
    /// inconclusive; there is no explicit reason to stop going on, but that
    /// doesn't necessarily make it sound.
    ///
    /// # TL,DR
    ///
    /// > This function **may yield false positives** but no false negatives.
    ///
    /// ## Example: `Self = &'borrow i32`
    ///
    /// When `Self = &'borrow i32`, we know that the backing pointer is
    /// necessarily non-null and well-aligned.
    ///
    /// This means that bit-patterns such as `0 as *const i32` or
    /// `37 as *const i32` are "blatantly unsound" to transmute to a
    /// `&'borrow i32`, and thus `<&'borrow i32 as ReprC>::is_valid` will
    /// return `false` in such cases.
    ///
    /// But if given `4 as *const i32`, or if given `{ let p = &*Box::new(42)
    /// as *const i32; p }`, then `is_valid` will return `true` in both cases,
    /// since it doesn't know better.
    ///
    /// ## Example: `bool` or `#[repr(u8)] enum Foo { A, B }`
    ///
    /// In the case of `bool`, or in the case of a `#[repr(<integer>)]`
    /// field-less enum, then the valid bit-patterns and the invalid
    /// bit-patterns are all known and finite.
    ///
    /// In that case, `ReprC::is_valid` will return a `bool` that truly
    /// represents the validity of the bit-pattern, in both directions
    ///
    ///   - _i.e._, no false positives (_validity_-wise);
    ///
    /// Still, there may be _safety_ invariants involved with custom types,
    /// so even then it is unclear.
    fn is_valid (it: &'_ Self::CLayout)
      -> bool
    ;
}

#[doc(hidden)] /** For clarity;
                   this macro may be stabilized
                   if downstream users find it useful
                **/
#[macro_export]
macro_rules! from_CType_impl_ReprC {(
    $(@for[$($generics:tt)*])? $T:ty $(where $($bounds:tt)*)?
) => (
    unsafe
    impl$(<$($generics)*>)? $crate::layout::ReprC
        for $T
    where
        $($($bounds)*)?
    {
        type CLayout = Self;

        #[inline]
        fn is_valid (_: &'_ Self::CLayout)
          -> bool
        {
            true
        }
    }
)}

#[inline]
pub
unsafe
fn from_raw_unchecked<T : ReprC> (c_layout: T::CLayout)
  -> T
{
    if let Some(it) = from_raw::<T>(c_layout) { it } else {
        if cfg!(debug_assertions) || cfg!(test) {
            panic!(
                "Error: not a valid bit-pattern for the type `{}`",
                // c_layout,
                ::core::any::type_name::<T>(),
            );
        } else {
            ::core::hint::unreachable_unchecked()
        }
    }
}

#[deny(unsafe_op_in_unsafe_fn)]
#[inline]
pub
unsafe
fn from_raw<T : ReprC> (c_layout: T::CLayout)
  -> Option<T>
{
    if <T as ReprC>::is_valid(&c_layout).not() {
        None
    } else {
        Some(unsafe {
            const_assert! {
                for [T]
                    [T : ReprC] => [T::CLayout : Copy]
            }
            crate::utils::transmute_unchecked(c_layout)
        })
    }
}

#[deny(unsafe_op_in_unsafe_fn)]
#[inline]
pub
unsafe // May not be sound when input has uninit bytes that the output does not
       // have.
fn into_raw<T : ReprC> (it: T)
  -> T::CLayout
{
    unsafe {
        crate::utils::transmute_unchecked(
            ::core::mem::ManuallyDrop::new(it)
        )
    }
}

pub use impls::Opaque;
pub(in crate)
mod impls;

mod niche;

#[apply(hidden_export)]
use niche::HasNiche as __HasNiche__;

#[apply(hidden_export)]
trait Is { type EqTo : ?Sized; }
impl<T : ?Sized> Is for T { type EqTo = Self; }

/// Alias for `ReprC where Self::CLayout::OPAQUE_KIND = OpaqueKind::Concrete`
pub
trait ConcreteReprC
where
    Self : ReprC,
{
    type ConcreteCLayout
    :
        Is<EqTo = CLayoutOf<Self>> +
        CType<OPAQUE_KIND = OpaqueKind::Concrete> +
    ;
}
impl<T : ?Sized> ConcreteReprC for T
where
    Self : ReprC,
    CLayoutOf<Self> : CType<OPAQUE_KIND = OpaqueKind::Concrete>,
{
    type ConcreteCLayout = CLayoutOf<Self>;
}

#[apply(hidden_export)]
fn __assert_concrete__<T> ()
where
    T : ConcreteReprC,
{}