1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
#![cfg_attr(rustfmt, rustfmt::skip)]
//! Trait abstractions describing the semantics of "being `#[repr(C)]`"
use_prelude!();
__cfg_headers__! {
use crate::headers::{
Definer,
languages::*,
};
}
pub(in crate)
mod macros;
#[doc(inline)]
pub use crate::{from_CType_impl_ReprC, ReprC, CType};
pub use crate::{
derive_ReprC,
};
type_level_enum! {
pub
enum OpaqueKind {
Concrete,
Opaque,
}
}
/// Safety (non-exhaustive list at the moment):
/// - `::core::mem::zeroed::<Self>()` must be sound to use.
pub
unsafe
trait CType
:
Sized +
Copy +
{
type OPAQUE_KIND : OpaqueKind::T;
fn zeroed() -> Self {
unsafe {
::core::mem::zeroed()
}
}
__cfg_headers__! {
fn short_name ()
-> String
;
#[allow(nonstandard_style)]
fn define_self__impl (
language: &'_ dyn HeaderLanguage,
definer: &'_ mut dyn Definer,
) -> io::Result<()>
;
fn define_self (
language: &'_ dyn HeaderLanguage,
definer: &'_ mut dyn Definer,
) -> io::Result<()>
{
definer.define_once(
&Self::name(language),
&mut |definer| Self::define_self__impl(language, definer),
)
}
fn name (
_language: &'_ dyn HeaderLanguage,
) -> String
{
format!("{}_t", Self::short_name())
}
fn name_wrapping_var (
language: &'_ dyn HeaderLanguage,
var_name: &'_ str,
) -> String
{
let sep = if var_name.is_empty() { "" } else { " " };
format!("{}{sep}{var_name}", Self::name(language))
}
/// Optional marshaler attached to the type (_e.g._,
/// `[MarshalAs(UnmanagedType.FunctionPtr)]`)
fn csharp_marshaler ()
-> Option<String>
{
None
}
}
}
unsafe
impl<T : LegacyCType> CType for T {
type OPAQUE_KIND = <T as LegacyCType>::OPAQUE_KIND;
__cfg_headers__! {
#[inline]
fn short_name ()
-> String
{
<Self as LegacyCType>::c_short_name().to_string()
}
#[inline]
fn define_self__impl (
_: &'_ dyn HeaderLanguage,
_: &'_ mut dyn Definer,
) -> io::Result<()>
{
unimplemented!()
}
fn define_self (
language: &'_ dyn HeaderLanguage,
definer: &'_ mut dyn Definer,
) -> io::Result<()>
{
match () {
| _case if language.is::<C>() => {
<Self as LegacyCType>::c_define_self(definer)
},
| _case if language.is::<CSharp>() => {
<Self as LegacyCType>::csharp_define_self(definer)
},
#[cfg(feature = "python-headers")]
| _case if language.is::<Python>() => {
<Self as LegacyCType>::c_define_self(definer)
},
| _ => unimplemented!(),
}
}
#[inline]
fn name (
language: &'_ dyn HeaderLanguage,
) -> String
{
Self::name_wrapping_var(language, "")
}
#[inline]
fn name_wrapping_var (
language: &'_ dyn HeaderLanguage,
var_name: &'_ str,
) -> String
{
match () {
| _case if language.is::<C>() => {
<Self as LegacyCType>::c_var(var_name).to_string()
},
| _case if language.is::<CSharp>() => {
let sep = if var_name.is_empty() { "" } else { " " };
format!("{}{sep}{var_name}", Self::csharp_ty())
},
#[cfg(feature = "python-headers")]
| _case if language.is::<Python>() => {
<Self as LegacyCType>::c_var(var_name).to_string()
},
| _ => unimplemented!(),
}
}
#[inline]
fn csharp_marshaler ()
-> Option<String>
{
<T as LegacyCType>::legacy_csharp_marshaler()
}
}
}
pub
type CLayoutOf<ImplReprC> = <ImplReprC as ReprC>::CLayout;
/// One of the two core traits of this crate (with [`ReprC`][`trait@ReprC`]).
///
/// `CType` is an `unsafe` trait that binds a Rust type to a C typedef.
///
/// To optimise compile-times, the C typedef part is gated behind the `headers`
/// cargo feature, so when that feature is not enabled, the trait may "look"
/// like a marker trait, but it isn't.
///
/// That's why **manually implementing this trait is strongly discouraged**,
/// although not forbidden:
///
/// - If you trully want a manual implementation of `CType` (_e.g._, for an
/// "opaque type" pattern, _i.e._, a forward declaration), then, to
/// implement the trait so that it works no matter the status of
/// the `safer_ffi/headers` feature, one must define the methods as if
/// feature was present, but with a `#[::safer_ffi::cfg_headers]` gate slapped
/// on _each_ method.
///
/// # Safety
///
/// The Rust type in an `extern "C"` function must have the same layout and ABI
/// as the defined C type, and all the bit-patterns representing any instance
/// of such C type must be valid and safe bit-patterns for the Rust type.
///
/// For the most common types, there are only two reasons to correctly be a
/// `CType`:
///
/// - being a primitive type, such as an integer type or a (slim) pointer.
///
/// - This crates provides as many of these implementations as possible.
///
/// - and recursively, a non-zero-sized `#[repr(C)]` struct of `CType` fields.
///
/// - the [`CType!`] macro can be used to wrap a `#[repr(C)]` struct
/// definition to _safely_ and automagically implement the trait
/// when it is sound to do so.
///
/// Note that types such as Rust's [`bool`] are ruled out by this definition,
/// since it has the ABI of a `u8 <-> uint8_t`, and yet there are many
/// bit-patterns for the `uint8_t` type that do not make _valid_ `bool`s.
///
/// For such types, see the [`ReprC`][`trait@ReprC`] trait.
pub
unsafe trait LegacyCType
:
Sized +
Copy +
CType +
{
type OPAQUE_KIND : OpaqueKind::T;
__cfg_headers__! {
/// A short-name description of the type, mainly used to fill
/// "placeholders" such as when monomorphising generics structs or
/// arrays.
///
/// This provides the implementation used by [`LegacyCType::c_short_name`]`()`.
///
/// There are no bad implementations of this method, except,
/// of course, for the obligation to provide a valid identifier chunk,
/// _i.e._, the output must only contain alphanumeric digits and
/// underscores.
///
/// For instance, given `T : CType` and `const N: usize > 0`, the type
/// `[T; N]` (inline fixed-size array of `N` consecutive elements of
/// type `T`) will be typedef-named as:
///
/// ```rust,ignore
/// write!(fmt, "{}_{}_array", <T as CType>::c_short_name(), N)
/// ```
///
/// Generally, typedefs with a trailing `_t` will see that `_t` trimmed
/// when used as a `short_name`.
///
/// ## Implementation by [`CType!`]:
///
/// A non generic struct such as:
///
/// ```rust,ignore
/// CType! {
/// #[repr(C)]
/// struct Foo { /* fields */ }
/// }
/// ```
///
/// will have `Foo` as its `short_name`.
///
/// A generic struct such as:
///
/// ```rust,ignore
/// CType! {
/// #[repr(C)]
/// struct Foo[T] where { T : CType } { /* fields */ }
/// }
/// ```
///
/// will have `Foo_xxx` as its `short_name`, with `xxx` being `T`'s
/// `short_name`.
fn c_short_name_fmt (fmt: &'_ mut fmt::Formatter<'_>)
-> fmt::Result
;
// {
// Self::short_name_fmt(&C, fmt)
// }
// fn short_name_fmt (
// language: &'_ dyn HeaderLanguage,
// fmt: &'_ mut fmt::Formatter<'_>,
// ) -> fmt::Result
// {
// match () {
// | _case if language.is::<C>() => Self::c_short_name_fmt(fmt),
// // | _case if language.is::<CSharp>() => Self::csharp_short_name_fmt(fmt),
// | _ => unimplemented!(),
// }
// }
/// Convenience function for _callers_ / users of types implementing
/// [`CType`][`trait@CType`].
///
/// The `Display` logic is auto-derived from the implementation of
/// [`LegacyCType::c_short_name_fmt`]`()`.
#[inline]
fn c_short_name ()
-> short_name_impl_display::ImplDisplay<Self>
{
short_name_impl_display::ImplDisplay { _phantom: PhantomData }
}
/// Necessary one-time code for [`LegacyCType::c_var`]`()` to make sense.
///
/// Some types, such as `char`, are part of the language, and can be
/// used directly by [`LegacyCType::c_var`]`()`.
/// In that case, there is nothing else to _define_, and all is fine.
///
/// - That is the default implementation of this method: doing
/// nothing.
///
/// But most often than not, a `typedef` or an `#include` is required.
///
/// In that case, here is the place to put it, with the help of the
/// provided `Definer`.
///
/// # Idempotent
///
/// Given some `definer: &mut dyn Definer`, **the `c_define_self(definer)`
/// call must be idempotent _w.r.t._ code generated**. In other words,
/// two or more such calls must not generate any extra code _w.r.t_ the
/// first call.
///
/// This is easy to achieve thanks to `definer`:
///
/// ```rust,ignore
/// // This ensures the idempotency requirements are met.
/// definer.define_once(
/// // some unique `&str`, ideally the C name being defined:
/// "my_super_type_t",
/// // Actual code generation logic, writing to `definer.out()`
/// &mut |definer| {
/// // If the typdef recursively needs other types being defined,
/// // ensure it is the case by explicitly calling
/// // `c_define_self(definer)` on those types.
/// OtherType::c_define_self(definer)?;
/// write!(definer.out(), "typedef ... my_super_type_t;", ...)
/// },
/// )?
/// ```
///
/// # Safety
///
/// Given that the defined types may be used by [`LegacyCType::c_var_fmt`]`()`,
/// the same safety disclaimers apply.
///
/// ## Examples
///
/// #### `i32`
///
/// The corresponding type for `i32` in C is `int32_t`, but such type
/// definition is not part of the language, it is brought by a library
/// instead: `<stdint.h>` (or `<inttypes.h>` since it includes it).
///
/// ```rust,ignore
/// unsafe impl CType for i32 {
/// #[::safer_ffi::cfg_headers]
/// fn c_define_self (definer: &'_ mut dyn Definer)
/// -> io::Result<()>
/// {
/// definer.define_once("<stdint.h>", &mut |definer| {
/// write!(definer.out(), "\n#include <stdint.h>\n")
/// })
/// }
///
/// // ...
/// }
/// ```
///
/// #### `#[repr(C)] struct Foo { x: i32 }`
///
/// ```rust,ignore
/// #[repr(C)]
/// struct Foo {
/// x: i32,
/// }
///
/// unsafe impl CType for i32 {
/// #[::safer_ffi::cfg_headers]
/// fn c_define_self (definer: &'_ mut dyn Definer)
/// -> io::Result<()>
/// {
/// definer.define_once("Foo_t", &mut |definer| {
/// // ensure int32_t makes sense
/// <i32 as CType>::c_define_self(definer)?;
/// write!(definer.out(),
/// "typedef struct {{ {}; }} Foo_t;",
/// <i32 as CType>::c_var("x"),
/// )
/// })
/// }
///
/// // ...
/// }
/// ```
fn c_define_self (definer: &'_ mut dyn Definer)
-> io::Result<()>
;
// {
// Self::define_self(&C, definer)
// }
// #[inline]
// fn define_self__impl (
// language: &'_ dyn HeaderLanguage,
// definer: &'_ mut dyn Definer,
// ) -> io::Result<()>
// {
// let _ = (language, definer);
// Ok(())
// }
/// The core method of the trait: it provides the implementation to be
/// used by [`LegacyCType::c_var`], by bringing a `Formatter` in scope.
///
/// This provides the implementation used by [`LegacyCType::c_var`]`()`.
///
/// The implementations are thus much like any classic `Display` impl,
/// except that:
///
/// - it must output valid C code representing the type corresponding
/// to the Rust type.
///
/// - a `var_name` may be supplied, in which case the type must
/// use that as its "variable name" (C being how it is, the var
/// name may need to be inserted in the middle of the types, such as
/// with arrays and function pointers).
///
/// # Safety
///
/// Here is where the meat of the safety happens: associating a Rust
/// type to a non-corresponding C definition will cause Undefined
/// Behavior when a function using such type in its ABI is called.
///
/// ## Examples
///
/// #### `i32`
///
/// ```rust,ignore
/// unsafe impl CType for i32 {
/// #[::safer_ffi::cfg_headers]
/// fn c_var_fmt (
/// fmt: &'_ mut fmt::Formatter<'_>,
/// var_name: &'_ str,
/// ) -> fmt::Result
/// {
/// write!(fmt, "int32_t {}", var_name)
/// }
///
/// // ...
/// }
/// ```
///
/// #### `Option<extern "C" fn (i32) -> u32>`
///
/// ```rust,ignore
/// unsafe impl CType for Option<extern "C" fn (i32) -> u32> {
/// #[::safer_ffi::cfg_headers]
/// fn c_var_fmt (
/// fmt: &'_ mut fmt::Formatter<'_>,
/// var_name: &'_ str,
/// ) -> fmt::Result
/// {
/// write!(fmt, "uint32_t (*{})(int32_t)", var_name)
/// }
///
/// // ...
/// }
/// ```
///
/// #### `[i32; 42]`
///
/// ```rust,ignore
/// unsafe impl CType for [i32; 42] {
/// #[::safer_ffi::cfg_headers]
/// fn c_var_fmt (
/// fmt: &'_ mut fmt::Formatter<'_>,
/// var_name: &'_ str,
/// ) -> fmt::Result
/// {
/// let typedef_name = format_args!("{}_t", Self::c_short_name());
/// write!(fmt, "{} {}", typedef_name, var_name)
/// }
///
/// // Since `c_var_fmt()` requires a one-time typedef, overriding
/// // `c_define_self()` is necessary:
/// #[::safer_ffi::cfg_headers]
/// fn c_define_self (definer: &'_ mut dyn Definer)
/// -> fmt::Result
/// {
/// let typedef_name = &format!("{}_t", Self::c_short_name());
/// definer.define_once(typedef_name, &mut |definer| {
/// // ensure the array element type is defined
/// i32::c_define_self(definer)?;
/// write!(definer.out(),
/// "typedef struct {{ {0}; }} {1};\n",
/// i32::c_var("arr[42]"), // `int32_t arr[42]`
/// typedef_name,
/// )
/// })
/// }
///
/// // etc.
/// }
/// ```
fn c_var_fmt (
fmt: &'_ mut fmt::Formatter<'_>,
var_name: &'_ str,
) -> fmt::Result
;
/// Convenience function for _callers_ / users of types implementing
/// [`LegacyCType`][`trait@LegacyCType`].
///
/// The `Display` logic is auto-derived from the implementation of
/// [`LegacyCType::c_var_fmt`]`()`.
#[inline]
fn c_var (
var_name: &'_ str,
) -> var_impl_display::ImplDisplay<'_, Self>
{
var_impl_display::ImplDisplay {
var_name,
_phantom: Default::default(),
}
}
__cfg_csharp__! {
/// Extra typedef code (_e.g._ `[LayoutKind.Sequential] struct ...`)
fn csharp_define_self (definer: &'_ mut dyn Definer)
-> io::Result<()>
;
// {
// Self::define_self(
// &CSharp,
// definer,
// )
// }
/// Optional marshaler attached to the type (_e.g._,
/// `[MarshalAs(UnmanagedType.FunctionPtr)]`)
fn legacy_csharp_marshaler ()
-> Option<rust::String>
{
None
}
// TODO: Optimize out those unnecessary heap-allocations
/// Type name (_e.g._, `int`, `string`, `IntPtr`)
fn csharp_ty ()
-> rust::String
{
Self::c_var("").to_string()
}
/// Convenience function for formatting `{ty} {var}` in CSharp.
fn csharp_var (var_name: &'_ str)
-> rust::String
{
format!(
"{}{sep}{}",
Self::csharp_ty(), var_name,
sep = if var_name.is_empty() { "" } else { " " },
)
}
}
}
}
__cfg_headers__! {
mod var_impl_display {
use super::*;
use fmt::*;
#[allow(missing_debug_implementations)]
pub
struct ImplDisplay<'__, T : LegacyCType> {
pub(in super)
var_name: &'__ str,
pub(in super)
_phantom: ::core::marker::PhantomData<T>,
}
impl<T : LegacyCType> Display
for ImplDisplay<'_, T>
{
#[inline]
fn fmt (self: &'_ Self, fmt: &'_ mut Formatter<'_>)
-> Result
{
T::c_var_fmt(fmt, self.var_name)
}
}
}
mod short_name_impl_display {
use super::*;
use fmt::*;
#[allow(missing_debug_implementations)]
pub
struct ImplDisplay<T : LegacyCType> {
pub(in super)
_phantom: ::core::marker::PhantomData<T>,
}
impl<T : LegacyCType> Display
for ImplDisplay<T>
{
#[inline]
fn fmt (self: &'_ Self, fmt: &'_ mut Formatter<'_>)
-> Result
{
T::c_short_name_fmt(fmt)
}
}
}
}
/// The meat of the crate. _The_ trait.
/// This trait describes that **a type has a defined / fixed `#[repr(C)]`
/// layout**.
///
/// This is expressed at the type level by the `unsafe` (trait) type
/// association of `ReprC::CLayout`, which must be a [`CType`][`trait@CType`].
///
/// Because of that property, the type may be used in the API of an
/// `#[ffi_export]`-ed function, where ABI-wise it will be replaced by its
/// equivalent [C layout][`ReprC::CLayout`].
///
/// Then, `#[ffi_export]` will transmute the `CType` parameters back to the
/// provided `ReprC` types, using [`from_raw_unchecked`].
///
/// Although, from a pure point of view, no checks are performed at this step
/// whatsoever, in practice, when `debug_assertions` are enabled, some "sanity
/// checks" are performed on the input parameters: [`ReprC::is_valid`] is
/// called in that case (as part of the implementation of [`from_raw`]).
///
/// - Although that may look innocent, it is actually pretty powerful tool:
///
/// **For instance, a non-null pointer coming from C can, this way, be
/// automatically checked and unwrapped, and the same applies for
/// enumerations having a finite number of valid bit-patterns.**
///
/// # Safety
///
/// It must be sound to transmute from a `ReprC::CLayout` instance when the
/// bit pattern represents a _safe_ instance of `Self`.
///
/// # Implementing `ReprC`
///
/// It is generally recommended to avoid manually (and `unsafe`-ly)
/// implementing the [`ReprC`] trait. Instead, the recommended and blessed way
/// is to use the [`#[derive_ReprC]`](/safer_ffi/layout/attr.derive_ReprC.html)
/// attribute on your `#[repr(C)] struct` (or your field-less
/// `#[repr(<integer>)] enum`).
///
/// [`ReprC`]: `trait@ReprC`
///
/// ## Examples
///
/// #### Simple `struct`
///
/// ```rust,no_run
/// # fn main () {}
/// use ::safer_ffi::prelude::*;
///
/// #[derive_ReprC]
/// #[repr(C)]
/// struct Instant {
/// seconds: u64,
/// nanos: u32,
/// }
/// ```
///
/// - corresponding to the following C definition:
///
/// ```C
/// typedef struct {
/// uint64_t seconds;
/// uint32_t nanos;
/// } Instant_t;
/// ```
///
/// #### Field-less `enum`
///
/// ```rust,no_run
/// # fn main () {}
/// use ::safer_ffi::prelude::*;
///
/// #[derive_ReprC]
/// #[repr(u8)]
/// enum Status {
/// Ok = 0,
/// Busy,
/// NotInTheMood,
/// OnStrike,
/// OhNo,
/// }
/// ```
///
/// - corresponding to the following C definition:
///
/// ```C
/// typedef uint8_t Status_t; enum {
/// STATUS_OK = 0,
/// STATUS_BUSY,
/// STATUS_NOT_IN_THE_MOOD,
/// STATUS_ON_STRIKE,
/// STATUS_OH_NO,
/// }
/// ```
///
/// #### Generic `struct`
///
/// ```rust,no_run
/// # fn main () {}
/// use ::safer_ffi::prelude::*;
///
/// #[derive_ReprC]
/// #[repr(C)]
/// struct Point<Coordinate : ReprC> {
/// x: Coordinate,
/// y: Coordinate,
/// }
/// ```
///
/// Each monomorphization leads to its own C definition:
///
/// - **`Point<i32>`**
///
/// ```C
/// typedef struct {
/// int32_t x;
/// int32_t y;
/// } Point_int32_t;
/// ```
///
/// - **`Point<f64>`**
///
/// ```C
/// typedef struct {
/// double x;
/// double y;
/// } Point_double_t;
/// ```
pub
unsafe
trait ReprC : Sized {
/// The `CType` having the same layout as `Self`.
type CLayout : CType;
/// Sanity checks that can be performed on an instance of the `CType`
/// layout.
///
/// Such checks are performed when calling [`from_raw`], or equivalently
/// (⚠️ only with `debug_assertions` enabled ⚠️), [`from_raw_unchecked`].
///
/// Implementation-wise, this function is only a "sanity check" step:
///
/// - It is valid (although rather pointless) for this function to always
/// return `true`, even if the input may be `unsafe` to transmute to
/// `Self`, or even be an _invalid_ value of type `Self`.
///
/// - In the other direction, it is not unsound, although it would be a
/// logic error, to always return `false`.
///
/// - This is because it is impossible to have a function that for any
/// type is able to tell if a given bit pattern is a safe value of that
/// type.
///
/// In practice, if this function returns `false`, then such result must be
/// trusted, _i.e._, transmuting such instance to the `Self` type will,
/// at the very least, break a _safety_ invariant, and it will even most
/// probably break a _validity_ invariant.
///
/// On the other hand, if the function returns `true`, then the result is
/// inconclusive; there is no explicit reason to stop going on, but that
/// doesn't necessarily make it sound.
///
/// # TL,DR
///
/// > This function **may yield false positives** but no false negatives.
///
/// ## Example: `Self = &'borrow i32`
///
/// When `Self = &'borrow i32`, we know that the backing pointer is
/// necessarily non-null and well-aligned.
///
/// This means that bit-patterns such as `0 as *const i32` or
/// `37 as *const i32` are "blatantly unsound" to transmute to a
/// `&'borrow i32`, and thus `<&'borrow i32 as ReprC>::is_valid` will
/// return `false` in such cases.
///
/// But if given `4 as *const i32`, or if given `{ let p = &*Box::new(42)
/// as *const i32; p }`, then `is_valid` will return `true` in both cases,
/// since it doesn't know better.
///
/// ## Example: `bool` or `#[repr(u8)] enum Foo { A, B }`
///
/// In the case of `bool`, or in the case of a `#[repr(<integer>)]`
/// field-less enum, then the valid bit-patterns and the invalid
/// bit-patterns are all known and finite.
///
/// In that case, `ReprC::is_valid` will return a `bool` that truly
/// represents the validity of the bit-pattern, in both directions
///
/// - _i.e._, no false positives (_validity_-wise);
///
/// Still, there may be _safety_ invariants involved with custom types,
/// so even then it is unclear.
fn is_valid (it: &'_ Self::CLayout)
-> bool
;
}
#[doc(hidden)] /** For clarity;
this macro may be stabilized
if downstream users find it useful
**/
#[macro_export]
macro_rules! from_CType_impl_ReprC {(
$(@for[$($generics:tt)*])? $T:ty $(where $($bounds:tt)*)?
) => (
unsafe
impl$(<$($generics)*>)? $crate::layout::ReprC
for $T
where
$($($bounds)*)?
{
type CLayout = Self;
#[inline]
fn is_valid (_: &'_ Self::CLayout)
-> bool
{
true
}
}
)}
#[inline]
pub
unsafe
fn from_raw_unchecked<T : ReprC> (c_layout: T::CLayout)
-> T
{
if let Some(it) = from_raw::<T>(c_layout) { it } else {
if cfg!(debug_assertions) || cfg!(test) {
panic!(
"Error: not a valid bit-pattern for the type `{}`",
// c_layout,
::core::any::type_name::<T>(),
);
} else {
::core::hint::unreachable_unchecked()
}
}
}
#[deny(unsafe_op_in_unsafe_fn)]
#[inline]
pub
unsafe
fn from_raw<T : ReprC> (c_layout: T::CLayout)
-> Option<T>
{
if <T as ReprC>::is_valid(&c_layout).not() {
None
} else {
Some(unsafe {
const_assert! {
for [T]
[T : ReprC] => [T::CLayout : Copy]
}
crate::utils::transmute_unchecked(c_layout)
})
}
}
#[deny(unsafe_op_in_unsafe_fn)]
#[inline]
pub
unsafe // May not be sound when input has uninit bytes that the output does not
// have.
fn into_raw<T : ReprC> (it: T)
-> T::CLayout
{
unsafe {
crate::utils::transmute_unchecked(
::core::mem::ManuallyDrop::new(it)
)
}
}
pub use impls::Opaque;
pub(in crate)
mod impls;
mod niche;
#[apply(hidden_export)]
use niche::HasNiche as __HasNiche__;
#[apply(hidden_export)]
trait Is { type EqTo : ?Sized; }
impl<T : ?Sized> Is for T { type EqTo = Self; }
/// Alias for `ReprC where Self::CLayout::OPAQUE_KIND = OpaqueKind::Concrete`
pub
trait ConcreteReprC
where
Self : ReprC,
{
type ConcreteCLayout
:
Is<EqTo = CLayoutOf<Self>> +
CType<OPAQUE_KIND = OpaqueKind::Concrete> +
;
}
impl<T : ?Sized> ConcreteReprC for T
where
Self : ReprC,
CLayoutOf<Self> : CType<OPAQUE_KIND = OpaqueKind::Concrete>,
{
type ConcreteCLayout = CLayoutOf<Self>;
}
#[apply(hidden_export)]
fn __assert_concrete__<T> ()
where
T : ConcreteReprC,
{}